High Expression Level of Tra2-β1 Is Responsible for Increased SMN2 Exon 7 Inclusion in the Testis of SMA Mice
نویسندگان
چکیده
Spinal muscular atrophy (SMA) is an inherited neuromuscular disease caused by deletion or mutation of SMN1 gene. All SMA patients carry a nearly identical SMN2 gene, which produces low level of SMN protein due to mRNA exon 7 exclusion. Previously, we found that the testis of SMA mice (smn-/- SMN2) expresses high level of SMN2 full-length mRNA, indicating a testis-specific mechanism for SMN2 exon 7 inclusion. To elucidate the underlying mechanism, we established primary cultures of testis cells from SMA mice and analyzed them for SMN2 exon 7 splicing. We found that primary testis cells after a 2-hour culture still expressed high level of SMN2 full-length mRNA, but the level decreased after longer cultures. We then compared the protein levels of relevant splicing factors, and found that the level of Tra2-β1 also decreased during testis cell culture, correlated with SMN2 full-length mRNA downregulation. In addition, the testis of SMA mice expressed the highest level of Tra2-β1 among the many tissues examined. Furthermore, overexpression of Tra2-β1, but not ASF/SF2, increased SMN2 minigene exon 7 inclusion in primary testis cells and spinal cord neurons, whereas knockdown of Tra2-β1 decreased SMN2 exon 7 inclusion in primary testis cells of SMA mice. Therefore, our results indicate that high expression level of Tra2-β1 is responsible for increased SMN2 exon 7 inclusion in the testis of SMA mice. This study also suggests that the expression level of Tra2-β1 may be a modifying factor of SMA disease and a potential target for SMA treatment.
منابع مشابه
Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation
Regulation of SMN2 exon 7 splicing is crucial for the production of active SMN protein and the survival of Spinal Muscular Atrophy (SMA) patients. One of the most efficient activators of exon 7 inclusion is hnRNP G, which is recruited to the exon by Tra2-β1. We report that in addition to the C-terminal region of hnRNP G, the RNA Recognition Motif (RRM) and the middle part of the protein contain...
متن کاملThe RNA binding protein hnRNP Q modulates the utilization of exon 7 in the survival motor neuron 2 (SMN2) gene.
Spinal muscular atrophy (SMA) is a recessive neuromuscular disorder caused by the homozygous loss of the SMN1 gene. The human SMN2 gene has a C-to-T transition at position +6 of exon 7 and thus produces exon 7-skipping mRNAs. However, we observed an unexpectedly high level of exon 7-containing SMN2 transcripts as well as SMN protein in testis of smn(-/-) SMN2 transgenic mice. Using affinity chr...
متن کاملTargeting SR Proteins Improves SMN Expression in Spinal Muscular Atrophy Cells
Spinal muscular atrophy (SMA) is one of the most common inherited causes of pediatric mortality. SMA is caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Humans have a centromeric copy of the survival of motor neuron gene, SMN2, which is nearly identical to SMN1. However, SMN2 cannot compensate for the loss of SMN1 because S...
متن کاملAntisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice.
Survival of motor neuron 2, centromeric (SMN2) is a gene that modifies the severity of spinal muscular atrophy (SMA), a motor-neuron disease that is the leading genetic cause of infant mortality. Increasing inclusion of SMN2 exon 7, which is predominantly skipped, holds promise to treat or possibly cure SMA; one practical strategy is the disruption of splicing silencers that impair exon 7 recog...
متن کاملIn vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes.
Humans have two near identical copies of the survival of motor neuron (SMN) gene, SMN1 and SMN2. In spinal muscular atrophy (SMA), SMN2 is not able to compensate for the loss of SMN1 due to an inhibitory mutation at position 6 (C6U mutation in transcript) of exon 7. We have recently shown that C6U creates an extended inhibitory context (Exinct) that causes skipping of exon 7 in SMN2. Previous s...
متن کامل